3.247 \(\int \frac{x^2 (a+b \sin ^{-1}(c x))^2}{(d-c^2 d x^2)^{3/2}} \, dx\)

Optimal. Leaf size=250 \[ -\frac{i b^2 \sqrt{1-c^2 x^2} \text{PolyLog}\left (2,-e^{2 i \sin ^{-1}(c x)}\right )}{c^3 d \sqrt{d-c^2 d x^2}}-\frac{\sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{3 b c^3 d \sqrt{d-c^2 d x^2}}+\frac{x \left (a+b \sin ^{-1}(c x)\right )^2}{c^2 d \sqrt{d-c^2 d x^2}}-\frac{i \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{c^3 d \sqrt{d-c^2 d x^2}}+\frac{2 b \sqrt{1-c^2 x^2} \log \left (1+e^{2 i \sin ^{-1}(c x)}\right ) \left (a+b \sin ^{-1}(c x)\right )}{c^3 d \sqrt{d-c^2 d x^2}} \]

[Out]

(x*(a + b*ArcSin[c*x])^2)/(c^2*d*Sqrt[d - c^2*d*x^2]) - (I*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])^2)/(c^3*d*Sqr
t[d - c^2*d*x^2]) - (Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])^3)/(3*b*c^3*d*Sqrt[d - c^2*d*x^2]) + (2*b*Sqrt[1 -
c^2*x^2]*(a + b*ArcSin[c*x])*Log[1 + E^((2*I)*ArcSin[c*x])])/(c^3*d*Sqrt[d - c^2*d*x^2]) - (I*b^2*Sqrt[1 - c^2
*x^2]*PolyLog[2, -E^((2*I)*ArcSin[c*x])])/(c^3*d*Sqrt[d - c^2*d*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.357123, antiderivative size = 250, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.276, Rules used = {4703, 4643, 4641, 4675, 3719, 2190, 2279, 2391} \[ -\frac{i b^2 \sqrt{1-c^2 x^2} \text{PolyLog}\left (2,-e^{2 i \sin ^{-1}(c x)}\right )}{c^3 d \sqrt{d-c^2 d x^2}}-\frac{\sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{3 b c^3 d \sqrt{d-c^2 d x^2}}+\frac{x \left (a+b \sin ^{-1}(c x)\right )^2}{c^2 d \sqrt{d-c^2 d x^2}}-\frac{i \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{c^3 d \sqrt{d-c^2 d x^2}}+\frac{2 b \sqrt{1-c^2 x^2} \log \left (1+e^{2 i \sin ^{-1}(c x)}\right ) \left (a+b \sin ^{-1}(c x)\right )}{c^3 d \sqrt{d-c^2 d x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(x^2*(a + b*ArcSin[c*x])^2)/(d - c^2*d*x^2)^(3/2),x]

[Out]

(x*(a + b*ArcSin[c*x])^2)/(c^2*d*Sqrt[d - c^2*d*x^2]) - (I*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])^2)/(c^3*d*Sqr
t[d - c^2*d*x^2]) - (Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])^3)/(3*b*c^3*d*Sqrt[d - c^2*d*x^2]) + (2*b*Sqrt[1 -
c^2*x^2]*(a + b*ArcSin[c*x])*Log[1 + E^((2*I)*ArcSin[c*x])])/(c^3*d*Sqrt[d - c^2*d*x^2]) - (I*b^2*Sqrt[1 - c^2
*x^2]*PolyLog[2, -E^((2*I)*ArcSin[c*x])])/(c^3*d*Sqrt[d - c^2*d*x^2])

Rule 4703

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(
f*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*(a + b*ArcSin[c*x])^n)/(2*e*(p + 1)), x] + (-Dist[(f^2*(m - 1))/(2*e*(p +
1)), Int[(f*x)^(m - 2)*(d + e*x^2)^(p + 1)*(a + b*ArcSin[c*x])^n, x], x] + Dist[(b*f*n*d^IntPart[p]*(d + e*x^2
)^FracPart[p])/(2*c*(p + 1)*(1 - c^2*x^2)^FracPart[p]), Int[(f*x)^(m - 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSi
n[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && LtQ[p, -1] && Gt
Q[m, 1]

Rule 4643

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[1 - c^2*x^2]/Sq
rt[d + e*x^2], Int[(a + b*ArcSin[c*x])^n/Sqrt[1 - c^2*x^2], x], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*
d + e, 0] &&  !GtQ[d, 0]

Rule 4641

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(a + b*ArcSin[c*x])^
(n + 1)/(b*c*Sqrt[d]*(n + 1)), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d + e, 0] && GtQ[d, 0] && NeQ[n,
-1]

Rule 4675

Int[(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> -Dist[e^(-1), Subst[In
t[(a + b*x)^n*Tan[x], x], x, ArcSin[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[n, 0]

Rule 3719

Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[(I*(c + d*x)^(m + 1))/(d*(m + 1)), x
] - Dist[2*I, Int[((c + d*x)^m*E^(2*I*(e + f*x)))/(1 + E^(2*I*(e + f*x))), x], x] /; FreeQ[{c, d, e, f}, x] &&
 IGtQ[m, 0]

Rule 2190

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m*Log[1 + (b*(F^(g*(e + f*x)))^n)/a])/(b*f*g*n*Log[F]), x]
 - Dist[(d*m)/(b*f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*Log[1 + (b*(F^(g*(e + f*x)))^n)/a], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rubi steps

\begin{align*} \int \frac{x^2 \left (a+b \sin ^{-1}(c x)\right )^2}{\left (d-c^2 d x^2\right )^{3/2}} \, dx &=\frac{x \left (a+b \sin ^{-1}(c x)\right )^2}{c^2 d \sqrt{d-c^2 d x^2}}-\frac{\int \frac{\left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt{d-c^2 d x^2}} \, dx}{c^2 d}-\frac{\left (2 b \sqrt{1-c^2 x^2}\right ) \int \frac{x \left (a+b \sin ^{-1}(c x)\right )}{1-c^2 x^2} \, dx}{c d \sqrt{d-c^2 d x^2}}\\ &=\frac{x \left (a+b \sin ^{-1}(c x)\right )^2}{c^2 d \sqrt{d-c^2 d x^2}}-\frac{\left (2 b \sqrt{1-c^2 x^2}\right ) \operatorname{Subst}\left (\int (a+b x) \tan (x) \, dx,x,\sin ^{-1}(c x)\right )}{c^3 d \sqrt{d-c^2 d x^2}}-\frac{\sqrt{1-c^2 x^2} \int \frac{\left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt{1-c^2 x^2}} \, dx}{c^2 d \sqrt{d-c^2 d x^2}}\\ &=\frac{x \left (a+b \sin ^{-1}(c x)\right )^2}{c^2 d \sqrt{d-c^2 d x^2}}-\frac{i \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{c^3 d \sqrt{d-c^2 d x^2}}-\frac{\sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{3 b c^3 d \sqrt{d-c^2 d x^2}}+\frac{\left (4 i b \sqrt{1-c^2 x^2}\right ) \operatorname{Subst}\left (\int \frac{e^{2 i x} (a+b x)}{1+e^{2 i x}} \, dx,x,\sin ^{-1}(c x)\right )}{c^3 d \sqrt{d-c^2 d x^2}}\\ &=\frac{x \left (a+b \sin ^{-1}(c x)\right )^2}{c^2 d \sqrt{d-c^2 d x^2}}-\frac{i \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{c^3 d \sqrt{d-c^2 d x^2}}-\frac{\sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{3 b c^3 d \sqrt{d-c^2 d x^2}}+\frac{2 b \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right ) \log \left (1+e^{2 i \sin ^{-1}(c x)}\right )}{c^3 d \sqrt{d-c^2 d x^2}}-\frac{\left (2 b^2 \sqrt{1-c^2 x^2}\right ) \operatorname{Subst}\left (\int \log \left (1+e^{2 i x}\right ) \, dx,x,\sin ^{-1}(c x)\right )}{c^3 d \sqrt{d-c^2 d x^2}}\\ &=\frac{x \left (a+b \sin ^{-1}(c x)\right )^2}{c^2 d \sqrt{d-c^2 d x^2}}-\frac{i \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{c^3 d \sqrt{d-c^2 d x^2}}-\frac{\sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{3 b c^3 d \sqrt{d-c^2 d x^2}}+\frac{2 b \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right ) \log \left (1+e^{2 i \sin ^{-1}(c x)}\right )}{c^3 d \sqrt{d-c^2 d x^2}}+\frac{\left (i b^2 \sqrt{1-c^2 x^2}\right ) \operatorname{Subst}\left (\int \frac{\log (1+x)}{x} \, dx,x,e^{2 i \sin ^{-1}(c x)}\right )}{c^3 d \sqrt{d-c^2 d x^2}}\\ &=\frac{x \left (a+b \sin ^{-1}(c x)\right )^2}{c^2 d \sqrt{d-c^2 d x^2}}-\frac{i \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{c^3 d \sqrt{d-c^2 d x^2}}-\frac{\sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{3 b c^3 d \sqrt{d-c^2 d x^2}}+\frac{2 b \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right ) \log \left (1+e^{2 i \sin ^{-1}(c x)}\right )}{c^3 d \sqrt{d-c^2 d x^2}}-\frac{i b^2 \sqrt{1-c^2 x^2} \text{Li}_2\left (-e^{2 i \sin ^{-1}(c x)}\right )}{c^3 d \sqrt{d-c^2 d x^2}}\\ \end{align*}

Mathematica [A]  time = 0.567592, size = 295, normalized size = 1.18 \[ \frac{b^2 \left (\sin ^{-1}(c x) \left (-\sqrt{1-c^2 x^2} \left (\sin ^{-1}(c x)+3 i\right ) \sin ^{-1}(c x)+6 \sqrt{1-c^2 x^2} \log \left (1+e^{2 i \sin ^{-1}(c x)}\right )+3 c x \sin ^{-1}(c x)\right )-3 i \sqrt{1-c^2 x^2} \text{PolyLog}\left (2,-e^{2 i \sin ^{-1}(c x)}\right )\right )}{3 c^3 d \sqrt{d \left (1-c^2 x^2\right )}}-\frac{a^2 x \sqrt{-d \left (c^2 x^2-1\right )}}{c^2 d^2 \left (c^2 x^2-1\right )}+\frac{a^2 \tan ^{-1}\left (\frac{c x \sqrt{-d \left (c^2 x^2-1\right )}}{\sqrt{d} \left (c^2 x^2-1\right )}\right )}{c^3 d^{3/2}}+\frac{a b \left (2 c x \sin ^{-1}(c x)-\sqrt{1-c^2 x^2} \left (\sin ^{-1}(c x)^2-2 \log \left (\sqrt{1-c^2 x^2}\right )\right )\right )}{c^3 d \sqrt{d \left (1-c^2 x^2\right )}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(x^2*(a + b*ArcSin[c*x])^2)/(d - c^2*d*x^2)^(3/2),x]

[Out]

-((a^2*x*Sqrt[-(d*(-1 + c^2*x^2))])/(c^2*d^2*(-1 + c^2*x^2))) + (a^2*ArcTan[(c*x*Sqrt[-(d*(-1 + c^2*x^2))])/(S
qrt[d]*(-1 + c^2*x^2))])/(c^3*d^(3/2)) + (a*b*(2*c*x*ArcSin[c*x] - Sqrt[1 - c^2*x^2]*(ArcSin[c*x]^2 - 2*Log[Sq
rt[1 - c^2*x^2]])))/(c^3*d*Sqrt[d*(1 - c^2*x^2)]) + (b^2*(ArcSin[c*x]*(3*c*x*ArcSin[c*x] - Sqrt[1 - c^2*x^2]*A
rcSin[c*x]*(3*I + ArcSin[c*x]) + 6*Sqrt[1 - c^2*x^2]*Log[1 + E^((2*I)*ArcSin[c*x])]) - (3*I)*Sqrt[1 - c^2*x^2]
*PolyLog[2, -E^((2*I)*ArcSin[c*x])]))/(3*c^3*d*Sqrt[d*(1 - c^2*x^2)])

________________________________________________________________________________________

Maple [B]  time = 0.237, size = 581, normalized size = 2.3 \begin{align*}{\frac{{a}^{2}x}{{c}^{2}d}{\frac{1}{\sqrt{-{c}^{2}d{x}^{2}+d}}}}-{\frac{{a}^{2}}{{c}^{2}d}\arctan \left ({x\sqrt{{c}^{2}d}{\frac{1}{\sqrt{-{c}^{2}d{x}^{2}+d}}}} \right ){\frac{1}{\sqrt{{c}^{2}d}}}}+{\frac{{b}^{2} \left ( \arcsin \left ( cx \right ) \right ) ^{3}}{3\,{c}^{3}{d}^{2} \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-{c}^{2}{x}^{2}+1}}+{\frac{i{b}^{2} \left ( \arcsin \left ( cx \right ) \right ) ^{2}}{{c}^{3}{d}^{2} \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-{c}^{2}{x}^{2}+1}}-{\frac{{b}^{2} \left ( \arcsin \left ( cx \right ) \right ) ^{2}x}{{d}^{2}{c}^{2} \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }}-2\,{\frac{{b}^{2}\sqrt{-{c}^{2}{x}^{2}+1}\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\arcsin \left ( cx \right ) \ln \left ( 1+ \left ( icx+\sqrt{-{c}^{2}{x}^{2}+1} \right ) ^{2} \right ) }{{c}^{3}{d}^{2} \left ({c}^{2}{x}^{2}-1 \right ) }}+{\frac{i{b}^{2}}{{c}^{3}{d}^{2} \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-{c}^{2}{x}^{2}+1}{\it polylog} \left ( 2,- \left ( icx+\sqrt{-{c}^{2}{x}^{2}+1} \right ) ^{2} \right ) }+{\frac{ab \left ( \arcsin \left ( cx \right ) \right ) ^{2}}{{c}^{3}{d}^{2} \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-{c}^{2}{x}^{2}+1}}+{\frac{2\,iab\arcsin \left ( cx \right ) }{{c}^{3}{d}^{2} \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-{c}^{2}{x}^{2}+1}}-2\,{\frac{ab\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\arcsin \left ( cx \right ) x}{{d}^{2}{c}^{2} \left ({c}^{2}{x}^{2}-1 \right ) }}-2\,{\frac{ab\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-{c}^{2}{x}^{2}+1}\ln \left ( 1+ \left ( icx+\sqrt{-{c}^{2}{x}^{2}+1} \right ) ^{2} \right ) }{{c}^{3}{d}^{2} \left ({c}^{2}{x}^{2}-1 \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(3/2),x)

[Out]

a^2*x/c^2/d/(-c^2*d*x^2+d)^(1/2)-a^2/c^2/d/(c^2*d)^(1/2)*arctan((c^2*d)^(1/2)*x/(-c^2*d*x^2+d)^(1/2))+1/3*b^2*
(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/d^2/c^3/(c^2*x^2-1)*arcsin(c*x)^3+I*b^2*(-d*(c^2*x^2-1))^(1/2)*arcsi
n(c*x)^2/d^2/c^3/(c^2*x^2-1)*(-c^2*x^2+1)^(1/2)-b^2*(-d*(c^2*x^2-1))^(1/2)*arcsin(c*x)^2/d^2/c^2/(c^2*x^2-1)*x
-2*b^2*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/d^2/c^3/(c^2*x^2-1)*arcsin(c*x)*ln(1+(I*c*x+(-c^2*x^2+1)^(1/2
))^2)+I*b^2*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/d^2/c^3/(c^2*x^2-1)*polylog(2,-(I*c*x+(-c^2*x^2+1)^(1/2)
)^2)+a*b*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/d^2/c^3/(c^2*x^2-1)*arcsin(c*x)^2+2*I*a*b*(-c^2*x^2+1)^(1/2
)*(-d*(c^2*x^2-1))^(1/2)/d^2/c^3/(c^2*x^2-1)*arcsin(c*x)-2*a*b*(-d*(c^2*x^2-1))^(1/2)*arcsin(c*x)/d^2/c^2/(c^2
*x^2-1)*x-2*a*b*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/d^2/c^3/(c^2*x^2-1)*ln(1+(I*c*x+(-c^2*x^2+1)^(1/2))^
2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (b^{2} x^{2} \arcsin \left (c x\right )^{2} + 2 \, a b x^{2} \arcsin \left (c x\right ) + a^{2} x^{2}\right )} \sqrt{-c^{2} d x^{2} + d}}{c^{4} d^{2} x^{4} - 2 \, c^{2} d^{2} x^{2} + d^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(3/2),x, algorithm="fricas")

[Out]

integral((b^2*x^2*arcsin(c*x)^2 + 2*a*b*x^2*arcsin(c*x) + a^2*x^2)*sqrt(-c^2*d*x^2 + d)/(c^4*d^2*x^4 - 2*c^2*d
^2*x^2 + d^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2} \left (a + b \operatorname{asin}{\left (c x \right )}\right )^{2}}{\left (- d \left (c x - 1\right ) \left (c x + 1\right )\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(a+b*asin(c*x))**2/(-c**2*d*x**2+d)**(3/2),x)

[Out]

Integral(x**2*(a + b*asin(c*x))**2/(-d*(c*x - 1)*(c*x + 1))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \arcsin \left (c x\right ) + a\right )}^{2} x^{2}}{{\left (-c^{2} d x^{2} + d\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(3/2),x, algorithm="giac")

[Out]

integrate((b*arcsin(c*x) + a)^2*x^2/(-c^2*d*x^2 + d)^(3/2), x)